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Motivation

⊚ 80% of the global population lives in countries where organized crime (OC)
presents a high risk [Organized Crime Index, 2023], with negative effects on
society, e.g. economic growth, human capital, influence on politics [Alesina
et al., 2019; Daniele and Dipoppa, 2017; Pinotti, 2015b; Sviatschi, 2022]
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Lack of Data

⊚ Challenge: lack of data [Pinotti, 2015a; United Nations Office on Drugs and
Crime, 2016]

◦ Illegal phenomenon
◦ OC activities tend to be secretive: corruption, money laundering, and obstruction

of justice

⊚ Lack of data:
◦ ...prevents detection of OC
◦ ...prevents designing and evaluating successful policies
◦ ...increases the cost of investigations (e.g. surveillance technologies, forensic

accounting practices)
◦ ...is particularly relevant when studying OC influence on politics due to the

widespread use of corruption

Can we use machine learning (ML) to create a measure of OC presence in
politics?

Can we use this new measure to facilitate detection and study OC influence on
politics?
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What we do: focus on OC and Politics

⊚ By leveraging ML algorithms, we predict local governments in Italy with a high
risk of mafia infiltration

◦ We create a synthetic measure of mafia infiltration in politics based on city council
dismissals for mafia infiltration by the national government

◦ We propose this indicator as a risk measure to improve the detection of mafia
infiltration in local politics

⊚ A stronger state presence... Do redistributive policies discourage or promote
OC influence on local politics?

◦ Transfers foster economic growth, reducing the grip of OC
◦ Transfers attract OC to new areas
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Preview

⊚ ML to predict mafia infiltration in local politics measured by city councils
dismissals for mafia infiltration:

◦ The index - based only on electoral and budget variables - predicts up to 96% of
municipalities infiltrated by mafias

◦ Investigating 4.5% (1.3%) - about 360 (100) - municipalities every year, we
correctly identify 90%(50%) with a precision of 1 out 6 (1 out 4)

◦ While false positives are generally a "bad thing", here they might represent
municipalities suitable for targeted investigations

⊚ We then test a new research question that would be difficult to explore
without such a fine-grained measure:

◦ Does a redistributive policy targeting areas affected by OC (the 2007-2013 EU
funds transfers) reduce mafia infiltration in politics? NO, it increases it.
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Daniele and Dipoppa, 2017]

⊚ Anti-OC policy:
◦ City councils dismissals for mafia [Acconcia et al., 2014; Daniele and Geys,

2015; Fenizia, 2018; Galletta, 2017]
◦ Unintended effects of anti-OC policies [Battiston et al., 2022; Castillo and

Kronick, 2020; Daniele and Dipoppa, 2023; Dell, 2015; Lessing, 2017]

⊚ Redistributive policy (EU funds) and economic development [Alesina and
Perotti, 2002; Becker et al., 2010a]

⊚ Machine learning in economics [Ash et al., 2020; Athey, 2018; Glaeser
et al., 2016; Kleinberg et al., 2018; Mohler et al., 2015]
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City council dismissals

Since 1991, the Italian authorities can dismiss a city council if there is evidence of
mafia infiltration, specifically:

⊚ Direct/indirect contacts of local politicians with organized crime groups
⊚ Ability to influence the decision-making process of local politicians (e.g.

directing public procurement towards criminal firms, hiring decisions, building
permits, etc.)

After the dismissal, three appointed bureaucrats rule the municipality up to 24
months

Most of the 379 dismissals took place in three Southern regions: Calabria,
Campania and Sicily
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Geographical distribution of dismissals

N. of dissolutions:

1

2

3

4

Never
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Predictive Design

⊚ Predicting detected mafia infiltration (yearly, municipal-level)
⊚ 𝑌 is constructed as follows:

◦ 1 if a city council was dissolved during the mandate of the mayor
◦ 0 otherwise Dissolved Councils and Infiltration distribution over time

⊚ Observations at the municipality-year level (𝑁=152k)
◦ Training the Model: Use a random portion of the data to train the model
◦ Cross-validation of the model
◦ Stratified sampling of 𝑋 and 𝑌 (hence=no temporal order preserved)

⊚ Nine algorithmic approaches (LR, Lasso, Ridge, Elastic Net, DT, RF,
GBoosting, XGBoost, DNN)

◦ Optimization via Hyperparameter Grid Search (1500+ model candidates, 200
tested)

◦ Run-time: 20 hours on 8-core machine, ∼ 5 hours on 32-core cluster

⊚ A municipal-year observation is infiltrated if the prediction is >0.5
⊚ Prediction phase/optimization → Explainability

◦ SHAP: Global and local interpretability of ML models Details
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Machine Learning Approach

⊚ Chosen metric: Recall

⊚ We chose to maximize true positives (i.e., penalize false negatives)

Recall =
True Positives

True Positives + False Negatives
(1)

⊚ Alternative metric: Precision

Precision =
True Positives

True Positives + False Positives
(2)
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A Highly Unbalanced Problem

Sampling Y=0 Y=1 % (Y=1)
Original 105,596 887 0.83
SMOTE 105,596 105,596 50.00
ADASYN 105,582 105,596 49.99
SMOTE+Tomek 105,595 105,595 50.00

⊚ Challenging prediction application: highly unbalanced distribution →
synthetic oversampling in the training set

⊚ In the test set the distribution remains identical (Y=1 is 0.83% of the total
observations)

Details Infiltration distribution over time
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Feature Space

⊚ Time range: 2001-2020 (quasi-universe of municipalities in Italy)

⊚ 200+ variables per each observation

◦ Regional variables

◦ Electoral variables (ideology, number of competitors, mayor’s demographics, etc)
List

◦ 22 Public Spending variables (at t and t-1), e.g. Local Police, Education,
Environment, Health, Tourism

◦ We differentiate across different versions of the spending variables (e.g. current
and capital spending) Details
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Prediction Performance: Recall
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Revoked Vs Confirmed dismissals
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Recall and Precision for Various Rankings, by Year
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Additional Results

⊚ Which are the most relevant predictors? Global SHAP Local SHAP Example

⊚ Variation across time and space Map

⊚ Variable distribution Graph Graph across macro-regions

⊚ External Validity 2021-2023 Prediction

⊚ Variation around the dismissal Prediction dynamics

⊚ Correlations with other crimes Correlations

⊚ Additional ML exercises Table
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A stronger State presence
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⊚ Do redistributive policy reduce or foster mafia infiltration in politics?
◦ Transfers can foster economic growth, reducing the grip of mafia, or they might

push mafia towards local governments managing new funds

⊚ Why do transfers promote growth in some areas and not in others?
◦ Becker et al [Becker et al., 2010b] show EU funds worked in most areas but

limited effect in Southern Italy
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Transfers windfall and Mafia

We study if and how a transfers windfall affects mafia presence in local politics:

⊚ The 2007-2013 EU funds

⊚ Funds are disproportionally allocated to "convergence" regions, i.e. regions
with a GDP below 75% EU average - Southern regions

⊚ Budget increase from about 30 to 56 billion Euros

We target the impact of the 2007-2013 wave which may have affected the risk of
mafia infiltration via two main channels:

⊚ Larger budget (i.e., more economic resources assigned) Graph

⊚ Increased decentralization in spending decision (local institutions are key
spending authority) & higher flexibility in implementation/simplification of rules

⊚ Municipalities can invest more in capital spending and provide more
subsidies to local firms/NGOs
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Identification: Diff-in-Disc

Infiltration𝑖 ,𝑡 = 𝛼 + 𝛽Treated𝑖 × Post2006𝑡 + 𝜂 𝑓 (Distance𝑖 ) × Post2006𝑡
+ 𝛾Treated𝑖 × 𝑓 (Distance𝑖 ) × Post2006𝑡 + 𝐹𝐸𝑖 + 𝐹𝐸𝑡 + 𝜀𝑖 ,𝑡 ,

(3)

⊚ Infiltration𝑖 ,𝑡= Infiltration risk for municipality i in year t; period 2001-2013, treatment since 2007

⊚ We consider municipalities in 4 regions: Lazio and Molise for center Italy, and Campania and Puglia
for southern Italy: Treated𝑖 , i.e., being a southern municipality

⊚ 𝑓 (Distance), i.e., a local polynomial of the distance in Km from the border defined for different
bandwidths: 5, 10, 25, 50, and 100 km and the entire region. Either linear or quadratic specification

⊚ We use a triangular kernel to weigh observations

⊚ 𝐹𝐸𝑖 + 𝐹𝐸𝑡 are municipality and year fixed effects

⊚ 𝜀𝑖 ,𝑡 standard errors are either clustered at the municipal level or computed by bootstrapping
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Identification: Diff-in-Disc

The spatial diff-in-disc [Butts, 2023] has three main advantages in our context, as
it reduces...:

⊚ ...the effect of any potential unbalancing around the administrative
discontinuity in time-fixed/slowly changing characteristics

⊚ ...the confounding effect of other compound treatments as long as the latter
do not vary simultaneously to the treatment

⊚ ...the non-classical measurement error induced by the non-random training of
the prediction measure (time-invariant part), while the comparability of treated
and control units reduces concerns related to its time-varying part

Three necessary conditions/assumptions:

⊚ Non-sorting around the threshold in both the pre-and post-treatment

⊚ Parallel trend assumption between treated/control municipalities

⊚ Changes in covariates induced by the treatment balance between T and C
Balancing
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Results: Diff-in-Disc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf.

Treat X Post 2006 0.142*** 0.132*** 0.138*** 0.141*** 0.120*** 0.138*** 0.111*** 0.115*** 0.084*** 0.112*** 0.055*** 0.083***
(0.040) (0.041) (0.038) (0.040) (0.033) (0.037) (0.026) (0.033) (0.020) (0.027) (0.012) (0.017)

Observations 1,298 1,298 2,023 2,023 3,934 3,934 7,105 7,105 10,904 10,904 17,111 17,111
R-squared 0.701 0.706 0.700 0.700 0.723 0.724 0.784 0.784 0.822 0.823 0.806 0.806
Poly. 1st 2nd 1st 2nd 1st 2nd 1st 2nd 2nd 2nd 1st 2nd
Specification 5Km 5Km 10Km 10Km 25Km 25Km 50Km 50Km 100Km 100Km Regions Regions
Within R-squared .0757 .0887 .0646 .0648 .0471 .0502 .0452 .0453 .0438 .0455 .0482 .0495
Bootstrap .0006 .0018 .0008 .001 .0002 .0004 0 .0009 .0001 .0001 0 0
Mun. FE YES YES YES YES YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES YES YES YES YES
Base value 2006 .17 .17 .15 .15 .12 .12 .11 .11 .11 .11 .1 .1
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Results: Event Study
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Additional Tests

⊚ Placebo with fake borders Figure

⊚ Robust coefficient Table Figure

⊚ Placebo: EU Funds but no risk of Mafia Infiltration Table

⊚ Removing capital spending from the prediction Event Study

⊚ Mafia-related crimes Table Event Study

⊚ Mechanisms:
◦ Lazio Vs Campania (only decentralization) Table

◦ Puglia Vs Molise (decentralization + funds increase) Table
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Conclusions

⊚ Our ML-based approach correctly predicts 96% of infiltrated municipalities
with a good trade-off between recall and precision

⊚ Targeting a highly ranked subset of predictions allows linking recall and
precision meaningfully

⊚ The 2007-2013 wave of EU funds increased the risk of mafia infiltration in
treated municipalities

⊚ The mix of predictive and causal methods offers insights into the effects of
increased state presence (transfers) in OC affected areas
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Placebo: Diff-in-Disc
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Robust Coefficient: Diff-in-Disc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf.

Treat X Post 2006 0.132*** 0.135*** 0.141*** 0.139*** 0.138*** 0.142*** 0.115*** 0.130*** 0.112*** 0.125*** 0.083*** 0.096***
(0.041) (0.041) (0.040) (0.040) (0.037) (0.039) (0.033) (0.037) (0.027) (0.032) (0.017) (0.022)

Observations 1,298 1,298 2,023 2,023 3,934 3,934 7,105 7,105 10,904 10,904 17,111 17,111
R-squared 0.706 0.708 0.700 0.702 0.724 0.724 0.784 0.784 0.823 0.823 0.806 0.806
Poly. 1st 2nd 1st 2nd 1st 2nd 1st 2nd 2nd 2nd 1st 2nd
Specification 5Km 5Km 10Km 10Km 25Km 25Km 50Km 50Km 100Km 100Km Regions Regions
Within R-squared .0887 .0967 .0648 .0702 .0502 .0505 .0453 .0468 .0455 .0458 .0495 .0499
Bootstrap .0018 .0013 .001 .0011 .0004 .0004 .0009 .001 .0001 .0002 0 0
Mun. FE YES YES YES YES YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES YES YES YES YES
Base value 2006 .17 .17 .15 .15 .12 .12 .11 .11 .11 .11 .1 .1

Back
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Robust Coefficient: Event Study
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Only Decentralization: Lazio Vs Campania

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf.

Treat X Post 2006 0.124 0.094 0.127 0.128 0.074 0.118 0.043 0.057 -0.002 0.051 0.018 -0.026
(0.109) (0.097) (0.110) (0.109) (0.087) (0.107) (0.055) (0.085) (0.032) (0.054) (0.018) (0.032)

Observations 273 273 491 491 1,137 1,137 2,793 2,793 7,323 7,323 12,002 12,002
R-squared 0.786 0.798 0.800 0.801 0.839 0.841 0.872 0.872 0.862 0.862 0.835 0.836
Poly. 1st 2nd 1st 2nd 1st 2nd 1st 2nd 2nd 2nd 1st 2nd
Specification 5Km 5Km 10Km 10Km 25Km 25Km 50Km 50Km 100Km 100Km Regions Regions
Within R-squared .0981 .1462 .0782 .0827 .0458 .0546 .0462 .0466 .0409 .0433 .0434 .0449
Bootstrap .256 .3364 .2692 .242 .4418 .3097 .4654 .5645 .9368 .3714 .3138 .4222
Mun. FE YES YES YES YES YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES YES YES YES YES
Base value 2006 .06 .06 .08 .08 .07 .07 .09 .09 .1 .1 .09 .09
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Decentralization + Increase funding: Puglia Vs Molise

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf.

Treat X Post 2006 0.184*** 0.192*** 0.198*** 0.188*** 0.187*** 0.212*** 0.142*** 0.181*** 0.087** 0.146*** 0.093*** 0.119***
(0.057) (0.059) (0.053) (0.056) (0.047) (0.052) (0.041) (0.047) (0.036) (0.043) (0.029) (0.037)

Observations 324 324 506 506 1,078 1,078 1,920 1,920 2,658 2,658 5,109 5,109
R-squared 0.465 0.469 0.477 0.478 0.496 0.498 0.505 0.510 0.537 0.541 0.538 0.539
Poly. 1st 2nd 1st 2nd 1st 2nd 1st 2nd 2nd 2nd 1st 2nd
Specification 5Km 5Km 10Km 10Km 25Km 25Km 50Km 50Km 100Km 100Km Regions Regions
Within R-squared .137 .1426 .1242 .1268 .0828 .0873 .042 .0518 .0362 .0437 .0794 .0818
Bootstrap .0033 .003 .0005 .0037 .0001 0 .0014 .0006 .0232 .0023 .0009 .0023
Mun. FE YES YES YES YES YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES YES YES YES YES
Base value 2006 .32 .32 .26 .26 .17 .17 .13 .13 .12 .12 .12 .12
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Alternative Algorithm: Diff-in-Disc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf. Inf.

Treat X Post 2006 0.067** 0.071** 0.060** 0.067** 0.039* 0.056** 0.048** 0.039 0.038** 0.048** 0.027*** 0.039***
(0.031) (0.032) (0.029) (0.031) (0.024) (0.028) (0.019) (0.024) (0.015) (0.020) (0.010) (0.013)

Observations 1,298 1,298 2,023 2,023 3,934 3,934 7,105 7,105 10,904 10,904 17,111 17,111
R-squared 0.730 0.730 0.730 0.731 0.745 0.747 0.800 0.800 0.830 0.830 0.819 0.819
Poly. 1st 2nd 1st 2nd 1st 2nd 1st 2nd 2nd 2nd 1st 2nd
Specification 5Km 5Km 10Km 10Km 25Km 25Km 50Km 50Km 100Km 100Km Regions Regions
Within R-squared .0341 .0352 .0256 .0279 .019 .0244 .0216 .0222 .02 .0202 .0233 .0237
Bootstrap .0316 .0314 .0368 .0291 .1046 .048 .0109 .1115 .012 .0157 .0057 .003
Mun. FE YES YES YES YES YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES YES YES YES YES
Base value 2006 .08 .08 .07 .07 .06 .06 .06 .06 .07 .07 .07 .07
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Alternative Algorithm: Event Study
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Conley HAC Standard Errors: Diff-in-Disc
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Mafia-Related Crimes: Diff-in-Disc

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Mafia Mafia Mafia Mafia Mafia Mafia Mafia Mafia Mafia Mafia Mafia Mafia

Treat X 2007 - 2008 0.502 0.396 0.548 0.559 0.137 0.364 0.072 0.209 0.224 0.013 0.075 0.112
(0.463) (0.486) (0.520) (0.470) (0.550) (0.541) (0.487) (0.556) (0.374) (0.500) (0.243) (0.334)

Treat X 2009 - 2012 1.327** 1.212* 1.281** 1.351** 0.950* 1.150* 0.959** 0.945* 1.040*** 0.940** 0.697*** 0.984***
(0.625) (0.665) (0.620) (0.627) (0.552) (0.617) (0.426) (0.552) (0.320) (0.443) (0.194) (0.270)

Observations 1,198 1,198 1,867 1,867 3,630 3,630 6,567 6,567 10,072 10,072 15,795 15,795
R-squared 0.476 0.479 0.459 0.461 0.425 0.426 0.425 0.426 0.448 0.449 0.460 0.461
Poly. 1st 2nd 1st 2nd 1st 2nd 1st 2nd 2nd 2nd 1st 2nd
Specification 5Km 5Km 10Km 10Km 25Km 25Km 50Km 50Km 100Km 100Km Regions Regions
Within R-squared .2484 .252 .2368 .2398 .2147 .216 .2184 .22 .2411 .2418 .2506 .2519
Mun. FE YES YES YES YES YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES YES YES YES YES
Base value 2006 2.14 2.14 2.14 2.14 2.21 2.21 2.33 2.33 2.09 2.09 1.84 1.84
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Removing Capital Spending from the Prediction
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Mafia-Related Crimes: Event Study
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Mafia-Related Crimes: Diff-in-Disc - 2 Post Periods

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Mafia Mafia Mafia Mafia Mafia Mafia Mafia Mafia Mafia Mafia Mafia Mafia

Treat X 2007 - 2008 0.502 0.396 0.548 0.559 0.137 0.364 0.072 0.209 0.224 0.013 0.075 0.112
(0.463) (0.486) (0.520) (0.470) (0.550) (0.541) (0.487) (0.556) (0.374) (0.500) (0.243) (0.334)

Treat X 2009 - 2012 1.327** 1.212* 1.281** 1.351** 0.950* 1.150* 0.959** 0.945* 1.040*** 0.940** 0.697*** 0.984***
(0.625) (0.665) (0.620) (0.627) (0.552) (0.617) (0.426) (0.552) (0.320) (0.443) (0.194) (0.270)

Observations 1,198 1,198 1,867 1,867 3,630 3,630 6,567 6,567 10,072 10,072 15,795 15,795
R-squared 0.476 0.479 0.459 0.461 0.425 0.426 0.425 0.426 0.448 0.449 0.460 0.461
Poly. 1st 2nd 1st 2nd 1st 2nd 1st 2nd 2nd 2nd 1st 2nd
Specification 5Km 5Km 10Km 10Km 25Km 25Km 50Km 50Km 100Km 100Km Regions Regions
Within R-squared .2484 .252 .2368 .2398 .2147 .216 .2184 .22 .2411 .2418 .2506 .2519
Mun. FE YES YES YES YES YES YES YES YES YES YES YES YES
Year FE YES YES YES YES YES YES YES YES YES YES YES YES
Base value 2006 2.14 2.14 2.14 2.14 2.21 2.21 2.33 2.33 2.09 2.09 1.84 1.84
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SMOTE (Synthetic Minority Over-sampling Technique)

Mathematical Formulation

⊚ Let 𝐴 be a minority class instance, and 𝐵 and 𝐶 be its 𝑘-nearest neighbors.

⊚ For each 𝐴, generate synthetic instances 𝐴′ by connecting 𝐴 with some of its
neighbors 𝐵 or 𝐶 in the feature space.

⊚ The synthetic instance 𝐴′ is given by 𝐴′ = 𝐴 + 𝜆 × (𝐵 − 𝐴), where 𝜆 is a
random value between 0 and 1.
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ADASYN (Adaptive Synthetic Sampling)

Mathematical Formulation

⊚ Incorporates a density distribution factor to adaptively generate synthetic
instances.

⊚ For each minority class instance, calculate the number of synthetic instances
to generate based on the density ratio.

⊚ Use the same formula as SMOTE to generate synthetic instances, but with an
adjusted 𝜆 based on the density distribution.

⊚ Promotes the creation of more synthetic instances for minority instances in
denser regions.
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SMOTE-Tomek (Combining SMOTE with Tomek Links)

Mathematical Formulation

⊚ Identify Tomek links, pairs of instances (𝐴, 𝐵) where 𝐴 is the nearest
neighbor of 𝐵 but they belong to different classes.

⊚ Apply SMOTE only to instances involved in Tomek links, focusing on
generating synthetic instances for instances that contribute to noise.

⊚ After SMOTE, remove Tomek links to clean the dataset from noisy and
irrelevant synthetic instances.
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Dissolved Councils and Infiltration distribution over time
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Infiltration distribution over time
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Political Variables

For each municipality election, we have information on:

⊚ Ideology/political placement of winning coalition/party

⊚ Share of votes for winning candidate

⊚ Number of competitors

⊚ Sex of the mayor

⊚ Educational background of the mayor (college degree or not)

⊚ Incumbency

⊚ Birth Location (municipality 𝑖 or not)
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Dynamics of EU Funds
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ML Explainability via SHAP

⊚ SHAP reveals the most influential features in a model’s prediction output

⊚ It compares the model’s output when a specific feature is included versus
when it is excluded

⊚ SHAP provides both local and global measures for each feature, helping us
assess its impact on the model’s decisions
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Predictive Performance
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Predicted Infiltration Risk 2001-2020, Distribution

0.0 0.2 0.4 0.6 0.8 1.0
Risk of Mafia Infiltration

0

10000

20000

30000

40000

50000

60000

70000

80000

Fr
eq

ue
nc

y

Mean (0.15)
Median (0.02)
90th Percentile (0.69)
75th Percentile (0.12)
95th Percentile (0.96)

Back



Dr
af

t

Predicted Infiltration Risk 2001-2020, Distribution in Time and Space
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Predicted Infiltration Risk 2001-2020, Distribution (by Macro-Region)
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Public Spending Variables/2

For each typology, we construct four variables. Given spending typology 𝑥:

⊚ Share of current expenses

Share Curr. (𝑥)𝑖 ,𝑡 =
Curr(𝑥)𝑖 ,𝑡∑

𝑥∈𝑋 Curr(𝑥)𝑖 ,𝑡
(4)

⊚ Share of capital expenses

Share Cap. (𝑥)𝑖 ,𝑡 =
Cap(𝑥)𝑖 ,𝑡∑

𝑥∈𝑋 Cap(𝑥)𝑖 ,𝑡
(5)

⊚ Expense rate

Rate(𝑥)𝑖 ,𝑡 =
(

Curr(𝑥)𝑖 ,𝑡 + Cap(𝑥)𝑖 ,𝑡
pop𝑖 ,𝑡

)
× 10𝑘 (6)

⊚ Share of current expenses out of total expenses:

Share Curr. Global (𝑥)𝑖 ,𝑡 =
Curr(𝑥)𝑖 ,𝑡∑

𝑥∈𝑋 (Curr(𝑥)𝑖 ,𝑡 + Cap(𝑥)𝑖 ,𝑡 )
(7)
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Recall and Precision for Various Rankings, by Macro-Region
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Investigations step

⊚ We can improve the first steps of the detection process, i.e. the probability to
start an investigation (“proactive” instead of “reactive” investigations)
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Predicted Infiltration Risk 2001-2020, Correlations
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Additional ML exercises

Table: Predictive results of additional ML exercises

Configuration Obs (% Y=1) Sampling Recall Roc-Auc Precision

Southern Regions 51,023 (2.31)
Original 0.776 0.841 0.165

ADASYN 0.903 0.843 0.089

Dissolved Municipalities 3,724 (32.81)
Original 0.932 0.613 0.392

ADASYN 0.953 0.620 0.395
Dissolved Municipalities
(No Yrs After Dissolution)

2,509 (43.76)
Original 0.942 0.697 0.573

ADASYN 0.955 0.697 0.570

Cross-sectional 7,755 (2.41)
Original 0.357 0.670 0.349

ADASYN 0.696 0.822 0.246
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External Validity: Municipalities Dissolved 2021-2023

Municipality Region dismissal year 2020 Avg. 2016-2020 Last term

Squinzano Apulia 30/01/21 98% 92% 97%
Guardavalle Calabria 23/02/21 100% 100% 100%
Carovigno Apulia 12/03/21 76% 76% 82%
Barrafranca Sicily 16/04/21 100%
Marano di Napoli Campania 18/06/21 100% 100% 100%
San Giuseppe Jato Sicily 09/07/21 81% 53% 42%
Villaricca Campania 06/08/21 91% 82% 82%
Foggia Apulia 06/08/21 20% 31% 22%
Nocera Terinese Calabria 30/08/21 100% 95% 99%
Simeri Crichi Calabria 30/08/21 99% 99% 99%
Rosarno Calabria 30/08/21 100% 98% 98%
Calatabiano Sicily 30/08/21 97% 98% 98%
Bolognetta Sicily 18/11/21 99%
Ostuni Apulia 27/12/21 42% 32% 24%
Castellammare di Stabia Campania 24/02/22 90% 75% 94%
Trinitapoli Apulia 05/04/22 65% 51% 65%
Torre Annunziata Campania 06/05/22 20% 67% 69%
Portigliola Calabria 22/05/22 0% 5% 5%
San Giuseppe Vesuviano Campania 09/06/22 100% 92% 99%
Soriano Calabro Calabria 17/06/22 100% 92% 99%
Neviano Apulia 05/08/22 53% 41% 53%
Cosoleto Calabria 21/11/22 33% 12% 13%
Nettuno Lazio 21/11/22 36% 54% 50%
Anzio Lazio 21/11/22 81% 71% 80%
Sparanise Campania 19/12/22 98% 97% 97%
Scilla Calabria 11/04/23 97% 99% 97%
Castiglione di Sicilia Sicily 23/05/23 100% 79% 75%
Rende Calabria 28/06/23 100% 99% 100%
Orta Nova Apulia 18/07/23 93% 73% 93%
Palagonia Sicily 09/08/23 93% 93% 92%
Acquaro Calabria 18/09/23 87% 95% 87%
Caivano Campania 17/10/23 95% 98% 94%
Capistrano Calabria 17/10/23 0% 35% 30%
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Identification: Balancing

5 Km 10 Km 25 Km 50 Km 100 Km Region
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Avg. change population 0.114 0.077 0.109 0.124 0.072 0.132 0.028 0.068 0.023 0.042 -0.098 0.027
Household size 0.006 0.007 0.000 0.005 -0.006 -0.005 -0.007 -0.005 -0.010 -0.010 -0.003 0.003
Aging rate 9.594 9.893 13.268 10.338 15.656 14.563 10.717 15.932 0.730 12.491 -10.216★★ -4.822
Poor families 0.018 0.078 -0.110 0.022 -0.199 -0.142 0.027 -0.164 -0.250 0.025 -0.550★★★ -0.559★★★

College rate (30-34) -1.619 -1.340 -1.975 -1.360 -3.030★★ -2.365★ -3.855★★★ -3.029★★ -4.347★★★ -3.929★★★ -4.131★★★ -4.688★★★

Dropout rate -2.472 -2.588 -3.020 -2.374 -3.459★★ -3.181★ -3.670★★★ -3.787★★ -3.168★★★ -3.826★★★ -3.000★★★ -2.316★★

Unemployment rate 0.341 0.429 0.171 0.307 -0.105 -0.054 -0.047 0.016 -1.261★ 0.062 -2.347★★★ -2.327★★★

Firms (1,000 inh.) -1.886 -2.093 -1.680 -1.727 -1.778 -1.863 -1.382 -1.865 0.169 -1.335 1.446★ 0.847
Small firms (%) 0.002 0.001 0.003 0.003 0.000 0.001 -0.003 0.002 -0.006 -0.003 -0.002 -0.005
Construction firms (%) 0.010 0.012 0.004 0.008 -0.008 0.000 -0.010 -0.010 -0.010 -0.009 -0.014★★★ -0.009
Female mayor -0.005 -0.001 0.004 -0.004 0.012 -0.003 0.029 0.012 0.021 0.038 -0.003 0.018
Graduated mayor -0.052 -0.063 -0.025 -0.046 0.010 -0.025 0.029 0.023 0.034 0.013 0.038 0.037
Incumbent mayor -0.076 -0.057 -0.074 -0.086 -0.088 -0.058 -0.091 -0.106 -0.067 -0.097 -0.025 -0.066
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Identification: Balancing

5 Km 10 Km 25 Km 50 Km 100 Km Region
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd

Avg. change population -0.618★★ -0.593★★ -0.597★★ -0.616★★ -0.605★★★ -0.622★★★ -0.511★★★ -0.648★★★ -0.077 -0.549★★★ 0.352★★★ 0.351★★★

Household size -0.034 -0.034 -0.014 -0.031 -0.003 -0.010 -0.006 -0.014 0.056★ -0.020 0.206★★★ 0.143★★★

Aging rate 7.095 2.772 0.837 5.847 0.568 0.362 -5.282 4.610 -40.932★★★ -4.181 -72.433★★★ -65.122★★★

Poor families 0.155 0.066 0.353 0.151 0.445 0.377 0.209 0.391 1.189★★★ -0.024 2.851★★★ 2.531★★★

College rate (30-34) -1.981★ -2.341★★ -1.666★ -1.969★ -0.740 -1.429 -0.403 -0.668 -0.550 -0.534 -0.011 -0.682
Dropout rate 3.231★ 3.148★ 3.844★★ 3.221★ 3.155★★ 3.795★★ 3.311★★★ 3.042★★ 4.023★★★ 3.537★★★ 4.404★★★ 4.582★★★

Unemployment rate 0.430 0.471 0.651 0.381 1.098 0.885 0.969 1.011 3.282★★★ 0.432 6.072★★★ 6.012★★★

Firms (1,000 inh.) -7.105★★ -8.385★★ -6.425★ -6.437★ -5.792★★ -6.818★★ -4.088★ -6.183★★ -4.685★★ -2.853 -2.704★ -7.325★★★

Small firms (%) 0.025 0.024 0.025★ 0.023 0.029★★ 0.028★ 0.024★★ 0.030★★ 0.014★ 0.024★★ 0.000 0.006
Construction firms (%) -0.016 -0.012 -0.020 -0.016 -0.010 -0.019 -0.019★ -0.010 -0.015★ -0.020★ -0.016★★ -0.016★

Female mayor 0.000 0.002 0.000 0.001 0.003 0.006 -0.009 0.004 -0.008 -0.017 0.005 -0.016
Graduated mayor -0.036 -0.028 -0.043 -0.042 0.041 -0.024 0.116 0.022 0.139★★ 0.119 0.165★★★ 0.154★★★

Incumbent mayor 0.096 0.102 0.071 0.095 0.033 0.059 0.025 0.042 0.016 0.031 -0.005 0.009
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Results: Graphical Evidence
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SHAP: Explainability Results
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Feature Explainability - Example
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Locally Explainable Predictions
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Descriptive Evidence: Predicted Infiltration Risk for Dissolved Municipalities
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